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Two forms of approximate equations for the dynamic flexure of beams are
known: <the Bernoulli-Euler equation
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The latter is usually called a "wave equation”. It leads to a finite
propagation veloclty of suddenly applled loads, and for thls reason it 1is
consldered essentially more sultable for the solution of transient problems
than Equation (0.1), which gives an infinite velocity of propagation of wave
fronts (see, for example, [1]).

Fer beams of circular cross section and for strip-beams taken from a rec-
tangular plate of infinite width, Equation (0.2) may be derived from the
general equations of the 4 ics of an elastic body [2]. To do this, one
represents the solution (*) in the form or a serles in powers of the distance
of a point from the neutral axis and one disregards all terms and derivatives
of higher than fourth order (in time as well as in the coordinates) in the
differential equations of infinite order that are obtained.

The fact that in the derivation of (0.2) it was necessary to neglect higher
derivatives, would seem to indicate that the application of this equation to
problems of transient propagation of deformations along the beam 1s excluded,
To thils one should add that (0.1) as well as (0,2) allow one to formulate
boundary conditions only in the sense of Saint-Venant,

The sufficlency of the latter is guaranteed in static problems by the
Sailnt-Venant principle. In accordance with this principle, an improvement
in the theory by the i1nclusion of the effects of self-equilibrating boundary
loads would lead only to local corrections in the stress field and would not
reflect (practically) on the values of deflectlions. in dinamical problems on
the other hand, stresses and displacements excited by an end load (without
regard to whether or not it is self-equilibrating) are not limited to a

*) See likewlse the dissertation of I.G. Selezov”"The investigation of tlLe
propagation of elastic waves in plates and shells”., Institute of Mechanics,
Academy of Sciences Ukrainian SSR, 1961.
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narrow zone near the loaded end, &s a result"of which the possibility in such
problems of posing boundary conditions only "in the sense of Saint-Venant"
is problematical.

The above casts doubt on the admissibility of the "wave" equation (0.2)
and even more on the 'nonwave" equation (0.1)) for the solution of problems
of deformation propagation . The applicability of the equations 1s doubtful
because of the restrictions on their solutions satisfying boundary conditions,
and likewlse even in cases when the boundary conditions do not contradict the
applicability of the equations (i.e. formulated according to Sain-Venant).

There are a number of theoretical [2 to 7].and experimental [5 and 6]
papers on the applicability of Equations (0.1) and (0.2); however, until
the present time there exist contradictory opinions on thls question. In the
opinion of some, Equations (0.2.) and (0.2) are not sultable for the solution
of problems of the propagation of disturbances and may be applied only to the
study of processes which change sufficlently smoothly both in time and in the
coordinates. In the opinion of others, Equation {0.2) covers all problems in
which the boundary conditions are given in the sense cof Saint-Venant.

In the present paper we atterpt to answer two fundamental questions.

1. To what extent is it valid to carry over the principle of Saint-Venant

to the dinamics of beams if one 1limits the boundary conditions to those of
Saint-Venant.

2. To what extent is it valid to solve problems with Salnt-Venant boundary
conditions by means of Equations (0.2).

The question 1 is first clarified from a qualicative point of view (Sec-
tion 1), and then a quantitative evaluation ?Section 4) is given. The second
uestion is clarified by means of an analysis of the solutions of Equation
0.2) and certailn other equations, and a comparison of these solutions with
exact solutions of the equations of dynamic elasticity for certain particular
transient problems. Such comparisons were also carried out earlier Eu, 8 and
9); however they elther compared solutlons of stationary problems *), or
exact solutlons were represented in the form of an expansion of statlionary
solutions (modes). Equation (0.2) also gilves two such modes, whereas the
exact solution leads to an infinite number of modes. To put all of these
together so as to obtain a transient or stationary process wlth a specified
form of disturbance 1s not possible. It would seem that 1f the higher modes
(absent in (0.2)) are essential in the solutlon, then results given by (0.2)
are not reliable. As will be shown subsequently, this 1is not always the case.
The inadequacy of an expansion in modes forces one to resort to other methods
of solution.

1. On the peoullarities of propagation of non-self-equilibrating and
self-eqQuilibrating end loads, We examine a semi-infinite beam to which at

time ¢ = O 4is applied a certain abrupt self-equllibrating load, which
thereafter remains unchanged.

This problem reduces to the solution of Equation

(M + p) grad divu — p rot rot u — pu™ =0 (1.1)
with the initlal conditilons
u=0, u =0 for t=20 (1.2)

*) It should be mentioned that the justification [5, 8 and 9] or refinement
{7 and 10] of the equatlons by comparison of phase velocitles 1is not always
valid. What occurs is that waves corresponding to the lower branches of the
dispersion curves for a beam as a three-dimenslonal body becomes surfacql
waves for high frequencles, which cannot occur in models described by a beam
theory . Hence, the corresponding curves of phase veloclties of three-
dimensional and one-dimenslonal theorles for high frequencies possess dif-
ferent forms of deformation and their coincidence is not to be taken as evi-
dence for the use of the one-dimensional theory.
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and the boundary conditilons
Oxx = fxby (2), Oxy = [0 (2), Ox: = [0, () for z=0 (1.3)
u=0(Q forz=o

Here dots denote differentiatlion with respect to time, éo(t) i1s the
Heaviside function, and the functions

fa="FfW 2, fy="1 W 2 f. =750 2)

satisfy Equatilons

(fds=0, (tas=0, (ras=0 (yras=0

\efds =0, \(afy -yt ds = 0 (1.4)
We look for a solution in the form
u=nu,+ u* (1.5)

Here ub(x, Ys z) 1s the solution of the static problem for the same beam
with the end loading

Oxx = [z Oxy = fun Ox: = [z
Substituting (1.5) in (1.1) to (1.3) we come to the conclusion that the
unknown vector u* should satisfy Equation (1.1) for the initial conditions

ut = — u, (2, ¥, 3, =0 (=0 (1.6)

and the stresses corresponding to the displacements u* for ¢ > O, should
be zero on the side surfaces of the beam as well as on its end.

Hence the original transient problem has been partitioned into static and
dynamic problems. In the latter, the motion of polnts of the beam are exci-
ted by initial displacements taken from the statlc problem. But by virtue of
Saint-Venant's principle, the displacements u, are of local character, being
already practically damped out for x of the order of the cross-sectional
dimension of the beam. It is physically obvious that the motion wu¥*, excited
by such a local disturbance, leads to the propagation of a packet of waves
along the beam. The width of this packet will at first be close to the width

of the zone of initial disturbance and subsequently will increase because of
dispersion.

At an arbitrary instant of time the following equation should be satis-
led
fle Vo=V, + T, (1.7)

Here 1V, 1s the potential energy of the initilal disturbance, and Vx, Ts
are the potential and kinetic energles of points of the beam in the dynamic
problem.

Turning now to the origilnal problem, and taking into account that its
solution i1s the sum of solutions of static and dynamic problems, we arrive
at the conclusion that in thils case the motlon of points of the beam reduces
to the propagation along the beam of a narrow wave packet. Near the beam
end x = O the stress fleld corresponding to the statlc solution 1s very
rapldly established (after the time ¢* — the time of passage of the defor-
mation wave over a distance of the order of the cross sectlon of the beam).

For ¢ - = (in practice for ¢3>t*) the sum of the kinetic and potential
energles of points of the beam approach 2),, of which one half remains in a
small neighborhood of the cross section x = O and one half propagates along
the beam.
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A fundamentally different picture 1s obtained if one assumes that the end

loading 1s non-self-equilibrating (1.e. even Af one of the equalities (1.4)

is not fulfilled). Then the above partition of the problem into two parts
turns out not to be possible since for t¢- « the displacements lu|~m. Physi-
cally, thils means that upon the sudden application of a nen-self-<equilibrating
end load to a semi-infinite beam the corresponding displacements continuously
increase with time and the sum of the potential and kinetic energies of points
of the beam approach infinity for ¢-= .

It is clear that in this case the disturbance fronts propagate with the
velocities of dilatational or shear waves; however, the disturbance zone
does not have the character of a narrow wave packet but spans a continuously
widening region starting from the loaded end.

We now assume that both self-equilibrating and non-self-equilibrating
loads are suddenly and simultaneousl)y applied to the end, whereby the maximum
values of the stresses for both loads are of the same order of magnitide.

In view of what has been indicated above, the ratio (Vy 4 T1)/(Va< Ta) (where
V;, Ty are, respectively, the potential and kinetic energles of the beam
excited by the self-equilibrating load and V,;, I, are excited by the non-
self-equilibrating load) continuously decreases with time, approaching zero
for ¢t =+ o ,

For ¢>>t* this ratlo must become extremely small, whereby the correc-
tlons applied to the stresses because of the self-equilibrating load , can
manifest themselves only in the immedlate neighborhood of the loaded end and
near the disturbance front and do not influence the displacements of the axis
of the beam.

Hence, one may assert that upon the simultaneous application of both self-
equllibrating and non-self-equilibrating loads the former may be neglected
on the same baslis as 1s done 1in static problems, 1.e. in view of the essen-
tial local nature of the correction.

For the same reason Saint-Venant's principle (in the sense indicated
above) is valid in the investigation of an important class of problems. The
above derivatlon, however, does not extend to perlodic loads. The latter
may eXert an influence of the stress and displacement flelds over the entire
length of the beam (independent of the type of loading). Therefore, it is
not, in general, possible to neglect self-equilibrating end loads in compari-
son with non-self-equilibrating end loads in the latter case.

As a specimen problem for a theoretical investigation of the questions that have been
posed above, we consider the plane deformation of an Infinltely wide plate,
without 1limiting ourselves to the bending problem. We shall give equations
for the case of dlsplacement that are symmetrically distributed with respect
to the center of the plate as well. The latter case 1s of Interest because
it 1eads to the same questions as 1n the bending problem; however, it 1s
essentlally more straightforward from the mathematical point of view. For the
construction of approximate equations we use the method of representing the
displacements and stresses in a series of Legendre polynomials [11]. In dyna-
mical problems thls course 1s more logical than the treditional serles repre-
sentation in the distance from a point to the middle z-surface. In the first
place, by using a Fourier series instead of a power serles we can also include,
almost without any additional restrictions, solutions wlth discontinuities of
the first type (1.e. we may apply the theory to wave propagation problems).
In the second place, by expanding the stresses in a serles of Legendre poly-
nomials, we may separate the self-equllibrating part of the stress field in
a pure form from the non-self-equilibrating part over a cross section of the
plate. This is important if one has in view an investigation of the possi-
bility of using Saint-Vaenant's principle in dynamical problems.

2, An exmot formulation of the problem; derivation of approximate equa-
tions from the exact equations. We consider the equations of motion of an
elastlic body, written for the case of plane deformation

J%u J%u J%u 9y 0w

g ~w T gm T =G g = — s ‘
(Cu=erer) (2.4)

3w o tw

0w ?u
g~ T O G + (1= C) g = — 0
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All of the coordinates and displacements in (2.1) are nondimensional,
which 1s achleved by dividing the dimensional coordinates and displacements
by the half-thickness » of the plate. The time ¢ in (2.1) is likewise
nondimensional, whereby

=@/, a=Vat+tmie, c=Vuip (2.2)
Here ¢, 1s the velocity of dilatational waves, ¢z 18 the veloclty of
shear waves, (a unit interval of time thus corresponds to the time of propa-
gation of a dilatational wave over a distance equal to the half-thickness of
the plate), and ¢., ¢, are nondimensional body forces obtained by dividing
the corresponding components of the body forces by (A -.{- 2n) / h.

Multiplying each of Equations (2.1) by Legendre polynomial p,(z) (n = O,
1, 2, ...) and integrating over the thickness of the plate, taking into
account the absence of stresses on the planes =z =1 1 , we obtain for
1 1
Un (2, T) = S uP, (z) dz,  wa (2, T) = S wP, (2) dz (2.3)
—1 —1
two 1nde;3endent infinite systems of partlal differential equations. In these

equations, which willl occur below, we use the notation
1 1

Gxn (2, T) = S gxPn (2) dz, gm (z, T) = S q:Pr (2) dz (2.4)
—1
1. The system describing the longitudinal deformation (u 1s even, and

w 1s an odd function of z)

uy — Uy + 201 202w (1) = — gxo
Uy’ — u,"" + 3Cyfuy — 3 (1 — Cyf)wy’ — 6C,% u (1) +
+2(1 =20, w (1) = — gx,
Cotwy” —w,"” — (1 — ) uy — 2w (1) + 20 %" (1) = — ¢ (2.9)
Colwy" —wy™ + 15“’1 — (1 —CyPuy —5(1 —Cyf) uy’ —
— 12w (1) + 2Cou’” (1) = — ¢z

.........................................

Here uf(1), w(l) are the values of y , p for 2z =1

u(l) = 2 (n+g)un w)= 2 (rt+p)wn  (2.6)

n=0, 2,... n=1,3,...

2. The system describing the flexural deformations (v 1s an odd and w
is an even function of g )

2.7
U —u" — (1 —C)w, — 202u()+2(1 —2C,Hw )= —gqxq

ug’ — ug" —15C, u;— (1 — CoP)wy —5 (1 — Cpt)wy’ — 12Cos%u (1) +
+2(1— 2Cn”)w (1) = — gxs
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(2.7)
Ca'wy” —wy” + 2C,%u’ (1) = — ¢z cont.
Caw) —w,"” + 3wy — 3 (1 — C212) u,” — 6w (1) + 20" (1) = — ¢z

@ 8 s o 6 o 8 » s s s s s s s s e s s s e s s e o e s

Here

u()= 2 (n++)un wi)= 2 (n+g)wn (2.8)
n=1,8,... n=0,2,...

By retaining in these systems a finite number of equations, one may obtain
approximate variants of the theory. In this procedure, if one retains terms
Up O Ugu, we-, (in the first case) or terms up to wugz,.,, W,, (in the second
case) in the expansions of the displacements in Legendre polynomials, then
1t is necessary to delete terms in the right-hand sldes corresponding to the
terms neglected in the series. In view of the linearlty of the problem, the
left-hand slides of the differential equations for all wu,, w, corresponding
to an arbitrary approximation will be the same. We give some of the opera-
tors of the left-hand sides of these equatlons for some first approximations.

Retained Operator
quantities
Longitudinal deformatlons
Ug L, (2.9
Ugy, Wy L.L, 4 3Cy? [L,] (2.10)
Flexural deformations
We, U, LL,+3 2y 2.11)
We Uy, W, LL2 + 15C,2 [L Ly + 3Css? o 2] 2.12)
02

Wer Uy Wy, U LPLE + 15 CofLLoLs + 525 Co (LoLy+ 30, 5v)
Here (2.13)
Li=—;§%—;§; C(i=1,2,...,10), Cif=—2~‘ (2.14)

The expression for the propagation velocity of longitudinal displacements
¢s corresponding to the state of plane stress has the form

s = ( éw‘::zﬁ; )Z. = ((1 ——E'vﬁ) P )% (219)

The parameter o, in (2.14), having the dimension of veloclty, takes on
the following values for i = 1.4y (y = 0,292)

i=2 3 4 5 6 7 8 9 10
C,—§=0.294 0.830 0.805 0.292 0.99 0.292 0.347 0.738 0.246

From these results one may observe the followlng.

1) For an arbitrary degree of accuracy the derived approximate equations
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give propagation velocities of discontinuities which are equal to ¢, and g,.
These colncide with the velocities of dilatational and shear waves (2.2).

The latter is a consequence of the fact that terms with higher derivatives
in each operator are always products of power of two homogeneous wave opera-
tors r,and I, , to which corresond just these velocities.

2) The equations with the operators (2.9) and (2.11) (i.e. the first
approximations for problems of longitudinal and flexural oscillations of a
plate), in which are considered only non-self-equilibrating terms in the
series for the stresses, colncide with the standard equations for longitudi-
nal oscillations of a plate in plane stress and with the Timoshenko equations,
However, the values of the coefficients in the latter equations do not coin-
cide with (2.9) and (2.11).

Indeed, in the adopted notation the equation of longitudinal oscillations
has the following form

Puy _ g0 e
m Ot ga =0 (2.16)
While the Timoshenko equation is written in the form
3? LAY K i F _
[(W —ag aTﬂ) (@a —a 51_5) + 30, 8_1‘] w0y =0 @.17)

where (adapted to plane deformation of a plate)

@, = 1.10, @, =202 (after Timoshenko [13])
o, = 1.10, ay =226 (after Ufliand {1])
o = 1,26, a,=205 (after Selezov)

The latter values of ¢, and q; were obtained by expanding the solutions
in a power serles in 2z and discarding the infinite number of terms with
derivatives higher than fourth order in the equations that are obtalned.

It is known that Equations (2.16) and (2.17) cover a number of problems
in which the displacements and stresses are sufficiently smooth (slowly chang-
ing) functions of x and T . Hence 1t follows that equations correspond-
ing to the operators (2.9) and (2.11) which correctly reveal the character
of the most raplidly changing parts of the solutions, must give the essentlial
error in determining slowly changing displacements and stresses.

3) The latter insufficiency is eliminated if one turns to the second
approximations to which operators (2.10) and (2.12) correspond.

In fact, the terms in square brackets of the operator (2.10) are identical
to (2.16%, while the terms of the operator (2.12) are close to the coeffici-
ents of (2.17). At the same time the asymptotics of the operator (2.12) for

slow processes
’ & e
ox a1
coincide with the asymptotics of the operator (2.17).

Therefore, the equations of the second approximation describing the asymp-
totlc behavior of the most rapidly changlng processes also give valild solu-
tions for slow processes. In the light of the above, the equation of longi~-
tudinal oscillations (2.16) and the equation of flexural oscillations (2.17)
may be treated (from the standpoint of applying general methods) as second
approximations of (2.10) and 2.12;, in which are disregarded terms of higher
derivatives (fourth order in (2.10) and sixth order in (2.12)).
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. Less formal interpretations of Equations (2.16) and (2.17) may also be
given.

In formulating the operators (2.9) and (2.11), all self-equilibrating com-
ponents were dlsregarded. Without raising the order of the operators, one
may proceed differently: one may take into account displacements correspond-
ing to the first of the self-~equllibrating components of body forces, assum-

ing an asymptotic dependence (for slow processes), Thus, for jw," | < 3jw,
[oy" | € 3C?|wy| from the third of Equations (2.5) we obtaln
vy =—1(1— 20212). Uy’
and substituting into the first equation, we find
L; (ug) = C13*qxo (2.18)

which 1s the wave equation for plane deformation of a plate.

Neglecting derlvatives of gy, and 1y, in the second and third equations
of the system (2.7), we obtain (*) Equations

wy” — 8/sCrwe” + 3wy’ = — ¥/35C1.% 20

“ (2.19)
wy" — Cyuy™ — 8/4Cod® (3uy - g’} = — Cigfqn
with the basic operator (2.17) identical to the system of equations of Timo-
shenko [12].

Thus the "engineering equations" — the equation of longitudinal oscilla-
tions and the Timoshenko equations, are the consequence of the theory of
elasticity 1f one considers processes 1n which displacements corresponding
to.-tne first of the self-equilibrating components of the body forces change
sufficiently slowly while the remaining components may be neglected. By the
indicated assumptlons, a simplification of the equations is attained, but
one loses accuracy in the determination of the velocity of propagation of
discontinuities and 1n the description of the stress and displacement fields
in their neighborhoods,

L) Without a special investigation, it is impossible to say how much this
loss is essential for evaluation of the practical significance of the edqua-
tion of longitudinal oscillations and the Timoshenko equation. As will
become clear 1n the sequel, in problems of propagation of deformations in
plates and beams the interest 1s focussed not only on the actual front but
also on the quasi-front, on whict the stresses, although not suffering dis-
continuitles, have essentlially larger gradlents. The energy of the wave
packet immediately following tie actual front is relatively small for suffi-
clently large distances from the source of the disturbance (x>>1). The
overwhelming part of the energy follows the quasi-front. This significantly
decreases the interest in describing the motion in the neighborhood of the
front and forces one to focus attention on the reglon where the larger part
of the energy of motlion is concentrated.

The latter should be kept in mind when one considers the feasibility of
approximate equations for the dynamics of plates and beams. Moreover, con-
sldering that a correct estimate must show a preferential distribution of
enrgy, it i1s 1lmpossible to unrestrictedlyw.reject even the Bernoulli-Euler
equation (0.1) as an apparatus for the study of the propagation of bending
deformations along the beam on the basls that in this equation one assumes
a,® az= 0, l.e. that the velocity of wave propagation 1s assumed infinite.
In the subsequent Sections we give a number of examples which illustrate
this and which throw light on the degree of accuracy and the region of appli-
cabllity of various approximate variants of the equations of the dynamics of
beams and plates. In passing, we give some quantitative results relative to
the propagation of self-equilibrating disturbances along a beam (plate).

*) Sometimes [5] it 1s asserted that the Timoshenko equations are based on
the assumption of plane cross sections. In the derivation of the Timoshenko
equations that has been given here, the assumptlon of plane cross sections
was not used (uz=E 0).
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3. Transition processes in the problem of longitudinal deformations of
plates, As a subject for investigation and comparison of exact and approxi-
mate equations of motion of beams, we consider a transient problem which is
from a mathematical point of view one of the simplest. This is the excita-
tlon of plane motion of an infinite plate by a concentrated .body force on
the plate yz changing according to the law

gz = Q= (2) 8, (2) &, (1), g: = Q: (2) 6, () 8, (1) @3.1)

Here &, is the Dirac function, &, is the Heaviside function, and initi-
ally (r = 0) the plate is at rest u=w= uw=uw = 0)_

This somewhat artificlal problem allows one to use not only the Laplace
transform but the Fourler transform as well, which is its advantage compared
to more realistic problems wherein the plate is semi-infinite and its motion
is excited by boundary loads varylng in an analogous way.

We start with the case where ¢, 1is an even and ¢, is an odd function of
z , 1.e. with nonflexural deformations of the plate. We construct a solution
proceeding from the equations of the second approximation to which corre-
sponds the operator (2.10). This operator, in addition to the non-self-
equilibrating stresses over the cross section, also takes into account the
sef-equilibrating stresses g,, which vary linearly. In this situation
Equations (2.5) take on the form

uy' —uo'” 3 (1 — 2C,)w, = — Qb4 () § (7) (3.2)
— (1 =20 uy + Colfw)” —w," — 3w, = — @8, (z) & (7)
1 1
Qo= & Qz()dz=2Q, Qu= S 2Q, () dz =2R (3.3)
—1 —1

After applying to (3.2) the Fourler transform (¥) in y and the Laplace
transform (£) in ¢ we obtain

(@ + P%) ulF + 8 (1 — 2CyY) iquw,™* = 2Q/p (3-4)
— (1 — 2C,) iquelf + (Coq® + p* + 3) w’F = 2R/ p

Therefore

ulF = A7 (%, ¢) [Cag® + P + 3) 2Q / p — Big (L — 203) 2R / p]
i = A7 (% ¢f) lig (1 — 203" 2Q /P + (¢ + ') 2R / Pl 3.5)

AP, P = p*t+ [(1’ + Cy?) ¢* + 31 P+ Cyl’g* + 3Cs,°¢ (3.6)
Since oi‘j, = — iquoLF +31 — 20212) wlLF one may write
LF —ig 2 igp? 2
o= [y 312 g el 7 Ot

2

3 (120 ) gy 4 7

@6.7)
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Hence

Oxzo = —,% °§ [—%-4—3(1—20,12)’ ig —

( COS pgv cos piT )] x
P12 — Pﬂ“ q2 _— pza qz —_ P12

—oo
xewmdg + o | 3(1-20,0 ) RELIRPS imdg (3.9)

Here (- P,?), (- P,?) are the roots of Equation 4(p®,4%) =
Pt =11 +Cot) P + 31 =V, (1 + Cpd) @& + 3P —Co’g* — 3Cs 2
(3.9)

Graphs of the functions of p, (q), p, (¢), Op, / 0q, dp, / dq are shown
in Fig.1.

If ¢ - o , the basic contribution to the value of the first integral
(3.8) will ve given by the integration of the first term and likewise the
Integration in the neighborhoods of the zeros of the denominators of the
terms in parentheses (i.e. in the neighborhood of ¢ =0 and g =o ),

In this case one may apply the expansion

Pl =3 + 0.463¢8 + ..., py = V3 + 0.1337¢ + ... for ¢—0 (3.10)
P = 0.830¢% — 0.0305¢* ..., p, = 0.911g — 0.0167¢> +...
= ¢ + 0.722 + ..., P, = q+ 0.361¢7 + ... for g— oo (3.11)

Pl = 0.294¢* +2.278 + ..., p, = 0.541q + 2.06¢7* + ...
Restricting ourselves for the time being to the case of non-self-equilib-

rating disturbances, i.e. setting R = 0, we have (3 12)

dgq

a + pi1) + sin (g — pit) i
%=—1+3—2C§1)’787—p2 Esm(qx piq“—Pi’ =1
0

whereby on the basis of the above considerations for r-o
o 9

%4 LU S tsin (g2 + (— O m) + sin (g2 + (— w1

0 =1
(m=(0.911¢ — 0.0167¢%) v, n=(g 4 0.361¢7Y)7) (3,13)
From the approximate solution that has been obtalned it follows that:

a) PFor z = cv (¢ <<Cg = 0.911) the basic contribution is given
by the first term of (3.13) (in the second term two components mutually can-
cel i.e. 1n this

): range O'xxo —_ Q (3.14)

b) For gz = 0.9117t + & , the first and second terms of (3.13) give
the basic contribution, whereby

Oy ~ — Q (%——%iosin (qe + 0.0167¢%7) iqq-) (3.15)
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If one lets @ = (0.0167t) "%, then Formula (3.15) may be rewritten in

the form
1 o«
nuff Ouo ~ — Q (5 —4ite) do)
el o
d i ; - R
' / ~ (Ai(q;) =— & cos (83 + ¢t) dt) (3.16)
P, 111
a5, 2 0
a5 \\~, A///"/ Here At(¢) i1s the Airy function
4 e [13] whose graphs may be found in
L] 3
. /,/ [1 ] .
e) For » =1 ~c¢ (¢ > 0) the last
0 % ] m %. term of (3.13) gives the basic con-
tribution (the first two terms mutu-
Fig. 1

ally cancel) and

Orxo ~ — QJ (1.20V e7) (3.47)

Therefore, Equations (3.1) give the following picture of propagation of
deformation upon the application of a sudden force Qp = 2Q8, (z) &, ().

1) Disturbances with jumps in the stresses ¢ propagate with the
velocity of dilatational waves (¢,) . At a sufficient distance from the
plane of the disturbance x = O the wave packet following behind degenerates

to a narrow peak-signal which carries a small part of the energy (approaching
zero for - o }

2) A quasi-front propagates with the velocity ¢; . In the region of
the quasi-front

Q1 Zam_ 40) & — _ TORBSHT g 914 (0.01677) " — —0.88v (3.18)

3) In the interval between x = O and the quasi-front the stresses
are close to the constant value -~ @

We compare the results that have been obtained with the exact solution
of the same problem arising immediately from (2.1) and with a cruder approxi-
mate solution based on the equation of longitudinal oscillations (2.18).

In this case the equation of longitudinal oscillations leads to the loss
of an actual front and of the narrow zone of disturbance in the immedlate
neighborhood of it, whereas the quasi-front turns into an actual front with
a jump in the stresses ¢ . In the region between the front and x = 0 the
obtained stresses are constant : g,,0=— ¢ . As far as the exact solution
of the problem 1s concerned, applying to (2.1) the Fourier and Laplace inte-
gral transforms we come to the following formula for the Laplace presenta-
tion:

(3.19)

] " 2 ¢ g sin gxdg
Q1oL ——= +_“_(,cmﬂ-2)’p’§ @+MBE,
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B (%, ¢%) = (¢* + n)? n, o ny — 4gPn,n,t coth n,
n; = Vq2 + ng n, = qu + 0122p2 (3'20)
Having in view a solution for sufficiently large x ami r , we expand

the hyperbolic functions entering in p 1into a power serles and retain the
first two terms.

Then we obtailn for o,,, an expression which differs from (3.8) only in
the values of the roots (- p,?), (- pz®) , namely (3.21)

p? = 0.830g% — 0.0470¢* + ...,  p? =3+ 0470g* + ... for g—0

This difference leads to a certain veloeclty, different from that in (3.18)
(less by 13%) , of the change of the stresses in the region of the quasi-

front, namely, ‘a‘%xrﬂ — 0.771:_% (fOI‘ r— 0311,) (322)

In all of the rest, the picture which was obtained earlier on the basis
of the second approximation (3.2) 1s confirmed. By different means the
investigation in [14) comes to the same results (for the region x = Oglw),
which are also qualitatively confirmed by experiments (*).

The above methods are not suitable for the investigation of the deforma-
tion 1n the initial period of motion (for relatively small ¢ ). Here one
may effectively use an expansion of the deformatlion into a Pourier serles
over an interval which is varied so as to completely cover the deformed part
of the plate (0 <|z|< 1).

The advantages of this method are the possibility of applying a Fourier
series to transient problems for unbounded regions. Also 1n transient prob-
lems for bounded reglons convergence of the trigonometrlc series 1s improved
in that interval of time in which the disturbance has not yet propagated over
the entire region. Formally, the indilcated solution 1s obtalned from the
solution corresponding to the constant interval 21 with a subsequent change
of 21 1into 2r

In the present problem, when the second of the approximations (3.2) 1is
used, the Fourler series on the interval 27 = 2r 1s obtained from the Four-
Zer integral (3.12) by an argument which is the reverse of that which is
usually applied to obtain the Fourier integral from the Fourler series, i.e.
by replacing ¢ by nn/t (n 1s the number of the term of the series) and
the integral by a sum and by multiplyil the zero order term of the series
by n/t and the remaining terms by 2n/r . In this case we obtain

[+ o] 2
Oxx o= __ 1 i (=pHm™t? 12 (1_ Cio? 2 n _qyi COS T .
for 0<J{a<T
Qg =0 for z>1 (3.23)

Here p,, p, are defined, as above 1n (3.9), by the substitution ¢ =pnn/r

The results of the calculation according to Formula (3.23), illustrating
the evolution and establishment of the stress wave in the plate, are shown
in Fig.2. The calculation is carried out for values of ¢ from 0.5 to 10.
For subsequent values one may use the.estimates which were given at the

*) In [14] there 1s an error in Formula (41):; 1n the first of the square
brackets the numerator is equal.to 6 and not 2 .
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beginning of the Section. The dotted lines in Fig.2 correspond to the ele-
mentary theory.

0762z,

:

Fig, 2

4, Investigation of the Saint-Venant effeot in the problem of longitudi-
nal oscillations of a plate. In the previous Section the case ¢ # 0, p=0
was Investigated. The converse case R # 0, @ = O also 1s of interest
inasmuch a&s in this case the body forces ¢, are self-equilibrating and,
therefore, the propagation of the deformation should correspond to the Saint-
Venant principle (1.e. in the form of a narrow wave packet continuously
" "

melting" because of dispersion).

It is clear that in the case under consideration the displacement u, does
not have a deciding influence on the propagation along the plate of self-
equillibrating shear stresses.

Substituting into the second of Equations (3.4) the quantity uLF = (,
we obtaln
Ca2@® + P2+ 3)wrfF =2R/p (4.1)

Hence we have the simple value

P sin VCalg® + 3 v 4.2
e o ) (4.2
Rwy = STy (V3 (@ = Ciat) e “.3)

For large t and small (1 — x)r?

wy = — Cywy” + 0 (z71) (4.4)
Oy = Cowy’ = — RJ, (V'3 (1 — C;22%)  (av>aw)

In the region where the external disturbances are applled
Oxz1 =~ — R €xp (— V30121I> (45)

The propagation prucess of stresses that are self-equilibrating over the
cross section ( g,,,) in the initial period of motion, may be studied more
exactly (without disregarding Uo) by expanding the stresses into a Fourler
series over a time-varying interval.

Proceeding from (3.5) and the connection of the stresses to the displace-

ments we find
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R, =—29 (Car —z) + Cﬂz 2 {n i 2P22

2

+ ¢ 2 (_1)z+1 1:__._"81’1'] + €2 = ~ (1 — cos nst Cm)}sin qr.  (4.6)

i=1

[cos P1T — €08 PyT -

where p,,, are defined in the same way as in (3.23).

The results of calcgulations
[ according to Formula (4.6) for
various values 0.5 <t < 10 are
1 shown in Pig.3. From this it
N, follows that starting with r=5
the deformation already conver-
L\ ges to a wave packet of width
~7 of the order of unity which pro-
pagalzs with the veloclty of a
p—— shear wave ¢, and to the estab-
lishment in the nelghborhood of
r x = 0 of a stress field which
: " ] X L L L L L is near the static field corre-
0 2 ] 3 [ ¥  sponding to the applied load.
Fig. 3 It is clear (as a consequence
: of the arguments glven in Sec-
tion 1 and the evaluations given
above) that with increasing r thils picture is retained. Hence the contin-
uation of the catculations past r+ > 10 does not give anything new.

18
g

In the case of periodic disturbances, a consideration of the connection
between the displacements and self-equilibrating and non-self-equilibrating
stresses 1s essentlal in a study of the Salnt-Venant effect.

If such a connection is ignored (the study of an unbounded medium), one
18 led to the following conclusion [16]: the Saint-Venant effect {"boundary
layer") takes place for frequencies below a certain critical frequency (depend-
ing on the frequency of the form of excitation) and is absent for higher fre-
quencles. In the case of a plate, a different conclusion 1is reached.

Changing in (3.2) the value of b,(r) to ¢i®", and proceeding from the
connection between the stresses and deformations, we obtaln for x> O

R0, = — €97 (¢ — @) (g + ) 9% — (¢ + o) ] (4.7)
g,3= "y [— (1 + (1)) 0 + 3Cs’]
VU (Cis® — 1) 0* — 3 (C1s" — 2Cyy) 0® + 36 (1 — Cy))?
g.2>0, ¢2<<0 for 0l w?<3; g% < 0, g2 < 0 for w2>3

The root g, 1is always imaginary and therefore the corresponding part of
of the stresses g¢,,, does nbt damp with an increase in the coordinate value
and the x-effect of Saint-Venant is absent. The effect becomes apparent for
w®< 3 only for the part of the stresses corresponding to the root gy -

Thus in stationary processes self~equilibrating loads continuously induce
stress waves which propagate along the plate.

It should be mentioned that for both statlionary and transient processes
a self-equilibrating disturbance excites also non-self-equllibrating stresses.

As a consequence of this, the stress waves described above, propagating
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along the plate, carry only part of the energy emitted by the external dis-
turbance,

However in the transient case the total energy leaving the region of the
self-equilibrating disturbance remains equal to V, (see Section 1).

Above, we solved a particular problem that shed light on the pecullarity
of propagation of self-equilibrating and non-self-equilibrating disturbances
for longitudinal deformations of a plate. A comparison for T3>>1 of the
solution of Equations (3.2) with results from the theory of elasticity funda-
mentally confirm the validity of this solution. One cannot say that this
conclusion is unexpected if one considers that for t3> 1 the quasi-front
smoothes out, as a consequence of which the higher components in the Legendre
polynomial expansion of the displacements become unessential.

The acceptability of the "engineering" equations for describing dynamic
deformations for small 1 and suddenly applied loads is usually questioned.

Below we carry out a comparison of solutions of (3.2) and the theory of elas-
ticity for small «r .

5. The dynamio flexidility of & plate for small r , We investigate the
dynamic flexibility of a plate under the action of body forces

gz = 208, (2) 8, ()
We willl first find a solution of the equations of elasticlty.

The homogeneity of the characteristic polynomial corresponding to the equa-
tions of elasticity (2.1) (in (2.1) only second order derivatives enter)
allows one to construct a solution in the form of separate waves. This 1is
convenient to use [15 and 20] for small =« .

The solution is carried out by the application of Laplace and Fourier
transforms. In this as a consequence of the homogeneity of the transform
representing waves reflected from the free surfaces of the plate, it turns
out to be possible to establish the formal identity of the inverse Fourler
transform with the direct Laplace transform. As a result, the necessity of
carrying out both the (L) and (¥) inverse transformations is eliminated.

In the case of longitudinal deformations, we find by means of a Laplace
transformation in r and a Fouriler transformation in x from Equation {2.1)
that

LF . dwkF
(¢* + p*) utF — Cn’d’:z; =+ (1 - cﬂz) q ddz =

dngF . duLF
rFr O (an q’ + Pz) wlF — (1 —Cy? ) ¥ =
Considering the boundary conditions for z =1

LF F LF
W b 5 (O — 2)(—iquir + ""‘;: )=0, —igutr 4%~ =0 (5.2)

The solution of the system (5.1) for uel (0, p) has the form

u“ (0, p) _ _;_’_ + (C:1 — 2) % p §° Mg (5.3)
[

2
d (5.1)
0

Q \¢*+ pY) B (P ¢%)
where B 1s determined by Expression (3.20).

The hyperbolic fuuctions which enter into B can be represented in the
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form

coth My =1+ 2 27 4L (5.4)
Then
B=a —a,+ 2a, (e + e+ ...) — 2a, (et 4 et 4 .. .) (3.9)
w! (0, p) 1 2 2 ¢ gdq [ a1e” ™M — gy~ ]
LR =7,+(c,,z__2)?pg__—m,(al_az) R A T

(a1 =1(q*+ na®) 1, as=4g%n:’ny) (5.6)

The terms in (5.6) containing exponentlal factors correspond to delayed
inverses, so that for 1t < 2 they may all be ignored, for 17 < 20,, 1t 1is
necessary to retain only the term with exp(— 2"1): and so forth.

Limiting ourselves to the time interval O < 7 < 2 , Ce We have

Qlu’ = p2+ (€2 — 2 (C*—DM2/n (5.7)
where
Lo b gdg b {200+ nape g
= PS 12 {(g2 + na?)? — 4qtning]’ D= p& n® (g% -+ na?)? — dgPning)? (5.8)
[1] 0

L L
We shall consider the Laplace transforms C and D ocnly on the real
axls p . Setting ¢ = ps 1in the integrals (5.8) we obtaln

Ct = ap, C = Y,ar? (5.9)

where

¢ s2ds
= , = 0.0435
% S (s2+ 1) (2 + C122)2—4s* V2 + 1 V- C1?)

For the calculation of D we introduce the substitution

Then

2 [e ]
Dt — eTf { 1@ ewar

(=)

f(x) = V/ar® £ 7 (a7 + 27 + Cr?)? (5.10)
(/v + M (VYar? + 27 + Cra?) — 4 (Yaw? + ) (Lot + 1) Ve + 7+ Cug?]

The integral (5.10) may be looked upon as a Laplace transform of the func-
tion f(T) . Considering, in addition, the presence of the factor in front
of the integral, we may write

-2
D =%S fla—2) (v —a)Pda for T2, D =0 for <2 (5.11)
2

A graph of the velocity u, for a suddenly applied longitudinal load
(x = 0) 1s given in Fig.4, where curve 1 1s for the theory of elasticity,
curve 2 for Eguation (5.12), curve 3 for Equation (5.1%), and curve 4 for
Equation (3.2)
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We next examine the nature of the dynamic flexibility according to models
of an infinite plate which
are described by simplified
equations.

/0 ) = 1. The equation of longi-
S tudinal deformations consid-

™~ ering only, u,, that is, the
3 basic operator L, (2.9)

N

” v

104 <1

o Z =208 ()8 (® (512)

the solutlon of this equa-
0.95 4 tion that 1s sought has the
0 08 18 24 32 4y form

Fig. 4 u' (0, 1) = Q (t2>0) (5.13)
2. The equation of longi~

tudinal deformations considering wu,, w, and the assumption of the smoothness
of u {x, 1) , usually used for a plate, (2.18

Cigfuy" — ug” = — 200, (%) 6y (1) (5.14)

its solution .
uy (0, 1) = Ci3Q (r>0) (5.15)

3. The equation of longitudinal deformations consldering u,, wys l.e.
Equations (3.2).

Let Gy = 2Q0, (%) 8, (7), ¢,; = 0. then by means of the Laplace transform in
T one may obtain 2
p nmmsg
46" O P) = 35 Gy + mg) @ (5463
where

my3 =1/, Cw?+ 1) P+ 3Csd) £ VI, €2 + 1) PP + 3Co®)* — Ci (@* + 3P%)

An expansion of pﬁuoL in a serles 1n negative powers of p 1in the neigh-
borhcod of the point at infinity results in the following

0.110 0.191 0.399  0.892 1.92
Q1 pPul =1 4 o + o +7,;u—+... (5.17)
Hence (5.18)

Q7luy" = 1 4 0.05507% — 0.007951* -0.553-107%18 — 0,221.40~47® p 0,530-100 7104 . . .

Graphs corresponding to Formulas (5.13),(5.15) and (5.18) and glven in
Fig.4 determine the power consumed by the plate and give a representation
of the possibilities of various simplified equations for small «r .

The relation between the longitudinal force and the mean velocity over the
cross section 1nitlally corresponds to a one-dimensional deformation and then
to a plane state of stress (o,,= O). This transition is accompanied by
oscillation relative to the asymptotic (7= ) value. Equations (3.2) satis-
factorily describe this process. The equations of the second order 5.12)
and (5.1%) determine the initial dependence (first) and the asymptotics

second).

An investigation of flexural deformations is made difficult by the fact
that in order to take into account displacements corresponding to self-~
equilibrati stresses one must solve an equation that is not lower than
sixth ordern%whereas, in the previous case, the second approximatlion corre-
sponded to an equation of fourth order).

The conclusions obtained above on the character of the propagation of
stresses o0,,, symmetrically distributed with respect to the center of the
plate, are also true in a number of cases for the propagation of flexural
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stresses.

“Here, however, there is an essential peculiarity, namely, that in bending
moment propagation a zone, containing a certain fixed part of the energy

close to total energy), does not widen uniformly, as in the previous case,
but decelerates (for 1 - = proporticnal to /7 5. In this connection, the
deformations in an interval between the front x = r and the indicated zone
decrease, It is of interest to clarify how the transition of the wave (for-
mation of the quasi-front) occurs under these conditions and to evaluate in
the same sense the velocity ¢, 1n the case of flexural deformation.

6. Investigation of the equations of dynamio flexure. We take advantage
of the fact that for small 1 , as well as for a sufflclently large neighbor-
hood of the front for large r , the mean displacement 0.5w, does not have
a decisive influence on the magnitude of bending moment.

To convince oneself of this, it 1s sufficlent to compare Fig.5 (dotted
line) which gives the distribution of the bending moment M*= M(x/T)/Mo for
0.5 < T < 5 (the solid line with account taken of wu, and y,, and the
dotted line for w, = 0), with Fig.o of [17]. We retain in the system (2.7)
the quantities vy, and y, (the second approximation for Wy = 0) and set

g. = 3My28, () §, (1) (9,=0) (6.1)

In this case

g = 2M B, (7) 6 (7) (9,5=0)
We obtaln Equations
uy — uy" — 3Cq%u, + 5 (1 — 20y wy’ = — 2Mib; (2) 8 (7) (6.2)
—3(1 —2C,) uy + Cowy” —w," — 15w, =0
After some computations similar to those given in Section 3, we obtain the

following solution of Equations (6.2) in the form of a series with a variable
expansion interval. The bending moment is

M (z, %) = Opa = u," + 5(1—20212)% = 0<z<7)
=M, + 2M02{% I—,l-,—_q_—p? [cospz'c—cos Pt + (an ¢#+60C,,° (1——6‘21’))x
n=1
2 1 — AT
« 21(_1)i ;‘::P{‘l-'] _1 :(m 1) }sin gz (q= ’}r—ﬂ) (6.3)

pl,: = 1[(1 + Cp®) @+ 15+ 3C5%1 + M/ [(1 +Cp®) 415 + 3C, 12—
— Cyg* — [3Cy,* + 60C, % (1 — Co®) 1¢* — 45 0212}‘/’
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Graphs constructed in accordance with (6.3) are shown in Fig.5. Likewise,
for comparison, the graph of N*(x, t) for the first approximation is shown
(also for w, = 0). In this case, setting the quantity w, = 0 1in the first
of Equations (6.2), we obtain

u)" — ur" — 3Couy = — 2M B, (2) §, () (6.4)

Hence by means of integral transforms one may find (as in (4.3))

k2

Mz, ) =u' =M V3Cnz g(rz — )7, (Cn VI (T = 29)dv (6.5)
in a form of a serles *

b e~y n
g 1t—costV @+ 3Cu® 1 —(—1)"\ _.
M (z, 1) = M,+ 2M, E{ 7 30,8 rh sin gz
(0<a:<r, gt = nx) (6.6)
As is seen from Fig.5, a quasi-front is likewlse formed in the case of
bending deformations. However, as a consequence of reasons glven above, the

magnitude of the bending moment in the reglon of the quasi-front decreases
with time.

An exact analysis of the applicability of approximate equations for small
T can be carried out by a comparison of dynamlic flexibllity determined by
the approximate equations and by the theory of elasticity, in the same way
as was done in Section 5 for the case of nonflexural deformation of the plate.

We now will determine the dynamic flexibility (the mean rotation angle is
=3/,u,) of an infinite plate under the action of & bending moment. We

change the right-hand slde of the first of the equations of system (5.1) to
- (3/P)”oz.

Then

Mot 3ut = Mo‘lqaL=—2— %( 2)—;—x
(e + ) mmaman, — ) 2 = )
0
X (om0 R | 4 (0 — e P (@ ) X

o (ﬁvh"l coung __sish nnmm) — 242 (°°“‘n1°°“‘nz mnldnhn:")} 7 (P’ o) 6.7

m ny nNa
(B* (2% g%) = (g* + na?)*nysinhn1 coshniy — &qPnyPngcoshin sinhing) (6.8)
Proceeding in the same way as in the previous case, we find that
Mo =3, + a7 + a7 + a7 tert<2 (6.9)
(o] x .
n =2 A0 0255, o= = @BA—144de __ _ 0,0365

) (*+ 1)'/.17 (4% 2n p (*+ 3_4)'/. (g* + 1)2F(g%)
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o0
_ 9 6.76¢4% + 3.4 . 48 qidq — —0.383 (6.10
= ":?S ( @+ D@34 (20 Vertoa )F (®) 383 (6.10)

(1]

(F(@) =@ +342—4e2 VF+1 Vg +34)
A graph of the angular velocity ¢ (6.9) is shown in Fig.6 (curve 1),
where the quantity 2/; ¢'M, ' 1s given on the ordinate.

We consider now how the simplified equations describe the dynamic flexi-
bllity of a model of the plate.

1) The equations of bending deforma-
tions taking 1nto account Wes U, . The basic oper-~

ator (2.11) Coltwy’ — wy'" + 3C,%u, = — ¢,0 =0 (6.11)

— Col'wy’ + u” — u,"" — 3C%u; = — gy = — 2M, (2) 8 (V)
After an application of the Laplace transform we obtailn for x = O

9" _Bw" 3 4 mumd CPp® (6.12)
My — 2 My, 2 p mumg(mi-t m) )

(my 3 =1ACr2p* &= Vs (Co¥ — 1)°p* — 3P)

An expansion (6.12) in negative powers of p 1in the neighborhood of the

poilnt at infinity 1is the following (6.13)
My 'ppl = 3/, — 0.658c + 0.4920* — 0.4100® + 0.359%* — 0.323c® + . . .
(o= 0.882 p?)
Thus

My e = 3/, — 0.3291% + 0.02057* — 0.569-10-31% 4~

-+ 0.889 10751% — 0.890-10-7%10 4 ... (1>0) (6.14)
2) The Timoshenko equations (2.19) . We note
that after the substitution

T = (1.2)"1,

3 and multiplication of the
/ == right-hand sides by the factor
! ?-\\%4 1.2 Equations (6.11) practi-
i —J cally do not differ from the
2¢] \ \\ Timoshenko equations (2.19).
4 \\ 4 b N Hence the Timoshenko equations
N — determine the angular velocity
N M (6.15)
0 0% 28 iz 13 ‘zf.a 9. =Vi2¢ (x/V12)

Here ¢'(1) 1s determinea
Fig. 6 by Expression (6.1%)
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3) The Bernoullili-Euler equation . This equa-
tion differs from the equations of Timoshenko in that the following are dis-
regarded: the longitudinal inertia (ul" = 0), the warping of the cross
section (uy = () and the shear (Bu, = — w,', but Oy oh

Yolawy™" + W™ = g0 + 1’ (6.16)
Therefore for g, = 0, g,; = 2M 8, (2) 8 (1)

1., 0.930 .
ol = 5wt (0, P)=Mo-?,;—,

.52
= M,,OV—;? 6.17)

Graphs constructed in accordance with Formulas (6.1%), (6.15) and (6.17)
are shown in Fig.6 (curves 2, 3, 4, respectively).

The deformations aw/32 also increase the dynamic flexibility in the case
of the actlon of a bending moment. As a result of this, Equations (6.11),
which do not take into account the components iy, for n > O , give an accu-
rate result only at the very beginning of the process, and thereafter gilve
a certaln error.

At the very beginning, the result corresponding to the Timoshenko differs
from the exact result by 10%, but thereafter very rapidly nears the result
of the theory of elastlcity (in the time of propagation of the dilatation wave
over one quarter of the thickness of the plate). Apparently the equations
of the sixth order (*), which take into account the components w,, u,, w,
and the asymptotic value (as in Timoshenko equations) of the components u,,
determine the angular velocity for all <+ practically exactly.

The Bernoulli-Buler equation for small r (in the reglon shown on the
graphs) is not applicable,

These results allow one to make the following assertions.

1. The Saint-Venant principle is applicable for the study of translent
processes in beam dynamics since deformations corresponding to suddenly
applied self-equilibrating loads localize themselves in the neighborhood of
the wave fronts and in the neighborhood of the cross section over which the
load 1s applled.

2. This assertion does not extend to self-equilibrating disturbances
with the continuous inflow of energy into the beam (for example, to perledic
disturbances).

3. The generalization (in the above-indicated sence) of the Saint-
Venant principle to beam dynamics gives the possibility of studylng not only
slowly changing but also rapidly changing transient processes by means of
the equations of longitudinal and flexural oscillations (2.16) and (2.17).
The reasons here are typically the same as those that allow one to apply the
elementary static theory of beams and plates in design in the presence of
concentrated loads. The solution which 1s obtained thereby gives a correct
representation of the propagation of energy along the beam and of the change
of the non-self-equllibrating stresses over the cross sectlon.

*) For the displacement problem in the presence of transverse loads, *he
best sixth-order equations are those that take into account the components
wes U, Uy and the asymptotic value of the component w, .
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4. The constant g4 in {2.16) determines the velocity of propagation
of the wave front for longitudinal disturbance of the beam. In essence, how-
ever, it 1s the velocity of propagation of the quasi-front. In the approxi-
mate equation (2.16),the deformations in the region between the quasi-front
and the actual front are neglected.

The constants v,, v, in (0.2) determine the velocity of propagation of
discontlnulties of a flexural disturbance of the Beam. However, bv,, v, ,
which do not coincide with the actual velocity of propagation of discon%inu—
ities o,, 0, , mBy be interpreted as velocities of propagation of the quasi-
fronts only 1n the very first perdod of motion (r < 5 to 7). Further, the
quasi-fronts essentially vanish, after which it 1s not possible to connect
with v,, », the propagation of any characteristic singularities of bending
deformatlons. Hence u,, vy, perhaps, are most correctly interpreted as
veloclties o,, o4 distorte a result of the approximations contained in
the arguments witﬂ which (9,2) were derived. It is interesting, however,
that although the identificatlon of vu,, v, with ,,, o5 gives a correct
description of the propagation of discontinulties, it nevertheless glves a
less acourate description of the general plcture of the deformation of the
beam, and, in particular in determining its dynamic flexibility (Section 6)
than for example if v,, v, are determined by the recommendation of Timo-
shenko.

5. Although Equations (2.16), (2.17) do not give a jump in the stres-
ses in the regions of the actual fronts, this does not lead to any easentlal
error. The reason is that the peak of stresses in the region of the front
shrinks rapidly and, as & result of this, in actual cases, when the loads
are not instantaneously applied, the magnitude of the stresses 1n the neigh-
borhood of the front will decrease. An analysis of the influence of the rate
of loading on the magnitude of the stresses at the front was carrled out on
& model consisting of two parallel beams elastically connected [18].

In the study of transient beam dynamlcs one may use, addition to Equa-
tions (O and za.lT , the equation of Bernoulli-Euler (0.1) which begin-
ning with 1 = 7 to 10 gives already a solution close to the solution of
{0,2) {19). The cire ce that the velocity of propagation of disconti-
nuities according to (0.,1) is infinite, does not turn out to have an essen-
tially quantitative effect on the deformation of the neutral axis and on the
picture of the propagation of the energy along the beam.

The advantage of the "wave" equation (0.2) compared to the "nonwave" equa-
ticn (0.1) 18 the possibility of clarifying the beam deformation picture for
v < 7 , whereby, &8 is seen from Section 6,the correct evaluation of the
dynamic flexibility is obtained down to + = O,
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